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1  Foreword
This report describes a stochastic (or Monte Carlo) model for dietary exposure assessment of
chemical substances based on monitoring data concerning the quality of agricultural products.
Exposure assessment is an important step in the risk assessment of chemical substances, such as
agricultural chemicals (pesticides, veterinary drugs), toxins (e.g. mycotoxins) and environmental
contaminants (e.g. dioxins).

The methods for probabilistic modelling described here are implemented in the program MCRA
(Monte Carlo Risk Assessment). MCRA can calculate intake distributions for both short-term (acute)
and long-term (chronic) exposures. Basically, for an assessment of acute risks MCRA simulates daily
consumptions by sampling a food consumption database, and combines these with a random sample
from either a residue database (empirical distribution) or a parametric distribution of residue levels.
The result is a full distribution of intakes, rather than traditional deterministic methods which only
provide a point estimate. Percentiles of the intake distribution can be used to assess risks by relating
them to e.g. an acute reference dose (ARfD). In a chronic risk assessment, MCRA calculates the
distribution of the usual exposure based on the average residue level and the empirical distribution of
consumption between individuals and between different consumption days of the same individuals.
Percentiles of this usual intake distribution can then be related to e.g. the acceptable daily intake
(ADI).

Uncertainty of percentiles can be established by bootstrapping. It is possible to include processing
factors (e.g. the effect of cooking on the residue level) and variability factors (to correct for the fact
that monitoring data are obtained from composite samples, whereas consumers may eat individual
units). Analyses can be done for a total population or for a subpopulation (e.g. children, or
consumption-days only). The effects of residue levels below analytical reporting limits can be
assessed.

The program MCRA is a result of an ongoing co-operation between RIKILT and Biometris since
1998. RIKILT co-ordinates the Dutch KAP programme (Quality of Agricultural Products) where
results of monitoring programs for chemical residues in food are gathered in a national database.
RIKILT also has a recipe database to link food codes from the Dutch food consumption table to
primary agricultural products. Biometris contributes statistical models and programs for quantitative
risk analysis.

This Reference Guide gives a complete description and justification of the statistical methods used in
the program MCRA. For a practical introduction into a dietary exposure assessment with MCRA
please consult the MCRA User Manual (de Boer et al., 2004).
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2  MCRA, an introduction
This documentation gives a description and justification of the statistical methods implemented in the
program MCRA (Monte Carlo Risk Assessment).

MCRA can be used for assessment of acute and/or chronic risks due to the intake of residues on food.
MCRA provides the following options:
� acute risk assessment
� chronic risk assessment
� parametric or non-parametric modelling of residue levels
� modelling of processing effects
� modelling of sample variability
� modelling of nondetects levels
� restrictions on age and/or consumption days
� calculate exposure distribution for consumption-days only
� bootstrap sampling of consumers and/or processing factors to assess the uncertainty of percentiles
� deterministic estimates (IESTI)

For a practical application of a dietary exposure assessment with the program MCRA we refer to the
MCRA User Manual (de Boer et al., 2003). In the next chapters, the theory of probabilistic modelling
with MCRA is described.
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3   Model description

3.1 Basic model
This chapter describes the stochastic (or Monte Carlo) models behind the MCRA program. These
models assess acute or chronic risks due to the intake of chemical substances from food by combining
food consumption survey data and residue concentration data from e.g. monitoring programs. The
model for acute risk allows for effects of food processing between monitoring and ingestion, it can
model unit variability either from available data or using default assumptions, and it uses information
on Limit of Reporting (LOR) and percent crop treated to check whether nondetects present a source of
uncertainty.
The basic model is:

i

p

k
ijkijk

ij w

cx
y

Ê
�= 1

where yij is the intake by individual i on day j��LQ� J�FKHPLFDO�VXEVWDQFH�SHU�NJ�ERG\�ZHLJKW���xijk is
the consumption by individual i on day j of food commodity k (in g), cijk is the concentration of the
chemical substance in commodity k eaten by individual i on day j (in mg/kg, ‘ppm’), and wi is the
body weight of individual i (in kg). Finally, p is the number of food commodities accounted for in the
model. Note that the definition of ‘commodity’ is flexible: it may represent a Raw Agricultural
Commodity (RAC), e.g. ‘apple’, but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple,
imported’.

In the stochastic model the quantities xijk, wi and cijk are assumed to arise from probability distributions
describing the variability for individual food consumption and weight, p(x1 ,...,xp,w), and for residue
concentrations in each food commodity, pk(c). In principle, these probability distributions may be
parametric (e.g. completely defined by the specification of some parameter values) or empirical (e.g.
only implicitly defined by the availability of a representative sample).

Food consumption data may arise from different sources. Typically national food consumption
surveys or monitoring programs provide information on food intake in the general population. For
example, from the Dutch Food Consumption Survey 1997 food consumption patterns (x1 ,...,xp), body
weight (w) and age (a) are available for 6250 individual persons on 2 consecutive days. Depending on
the problem, Monte Carlo samples may be drawn from the complete data base, from a day- or age-
restricted subset or from consumption-days only. In some cases there is insufficient information for
specific subgroups in the population. For example, in a study on infants (age up to 12 months), a
separately constructed food consumption database has been used (Boon et al. 2003).

In general a recipe data base is necessary to convert the amounts of food as consumed (e.g. pizza) to
amounts of commodities (x1 ,...,xp) of raw agricultural products which are used in the model. Van
Dooren et al. (1995)  provide such a conversion for the Dutch situation.

Residue concentration data may be available from different sources. In some countries national
monitoring databases exist, which are useful for the risk assessment of chemical compounds already
in use. For example the Dutch KAP database (van Klaveren 1999) stores annually more than 200.000
records of measurements originating from food monitoring programs for meat, fish, dairy products,
vegetables and fruit.

Given these probability distributions (or estimates thereof) Monte Carlo simulations can be used to
generate an estimate of the probability distribution p(yij) to assess acute risks by intake of the residue
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(see 3.2 ). When dietary components are consumed on a nearly daily basis, intake values yij may be
used to estimate the probability distribution p(yi.) for chronic risk assessment purposes (see 3.6 ).

3.2 Modelling of residu concentrations in consumed food

3.2.1  Distributional assumptions
Residue concentrations in the various food commodities are independent and therefore can be
modelled by univariate distributions.

3.2.1.1 Non-parametric modelling of residue levels
In the non-parametric (empirical) approach, residue values are sampled at random from the available
data and combined with the consumption data to generate a new distribution of exposure values. To
assess the risk-exposure, percentiles of the exposure distribution are estimated.

3.2.1.2 Parametric modelling of residue levels
In the parametric approach, residue concentrations per food commodity are sampled from parametric
distributions. A special feature of residue data is that the large majority of measured concentrations
(often more than 80%) is recorded as zero (nondetects). These values may correspond to true zero
concentrations (for example because the substance is never used in the specific product), or they may
correspond to low concentrations which are below a pre-established reporting limit (LOR). In any
case, the residue concentration distribution is very skew, with a large spike at zero and an extended
tail to higher values. For statistical modelling a two-step procedure is chosen. First, the presence of a
concentration � LOR on food products is modelled with a binomial distribution with a parameter p
representing the probability of a reported residue level. Probability p depends on the chemical
substance and the product and is estimated as the fraction of detects. Secondly, the non-zero residues
are modelled with a parametric distribution. After consideration of several possibilities using the
program BestFit, the lognormal distribution has been selected as being both theoretically sensible and
practically useful. The parameters  and Ø are the mean and standard deviation of the log-transformed
non-zero residue concentrations.
In the basic model (see 3.1 )

 ijkijkijk cposIc ¼=
with ijkI  indicating whether a residue concentration is sampled ( ijkI =1) or not ( ijkI =0), and cposijk the

residue concentration in the subpopulation of positive values. The probability of ijkI  being 1 or 0

depends on the number of detects found for commodity k and ijkI  is sampled separately for each

individual i on occasion j.

3.2.2  Modelling of processing effects
Concentrations in the consumed food may be different from concentrations in the product as
measured in monitoring programs (typically raw product) due to processing, such as peeling, washing,
cooking etc.
In general, we assume the model:

ijkkijk crfcpos ¼=
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where crijk is the concentration in the raw product, and where fk  is a factor for a specific combination
k of RAC and processing. Values will typically be between 0 and 1, although occasionally the
processing factor may also be >1 (e.g. drying as applied for grapes and figs).
The user of the model will have to specify processing factors for each commodity k as defined in the
food consumption data base. For this purpose, it is advised to maintain a data base of processing
factors, indexed by chemical substance, RAC and processing type (e.g. washing, peeling or other
processing). Before running the model, it may then be necessary to specify how the necessary
processing factors are derived from the data base entries and/or other information. Example: if there
are no processing factors known for captan in pears, it may be decided to use the corresponding
factors for apples instead.
Often the information will be of limited quality, and this may be entered in the Monte Carlo
modelling by specification of uncertainties. A practical proposal is to specify for each processing
factor two values:
1. fk,nom: the nominal value, typically some sort of mean from an experimental study
2. fk,upp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical

information on variability of the factor is available, there will often be uncertainty due to the
appropriateness of the processing study for the population of the risk assessment). The upper limit
should be such that experts will easily agree that it is not set too low.

A typical data base entry might thus read:
RAC processing fk,nom fk,upp

apple washing 0.5 0.7
and, confronted with the need to have processing factors for pears in a specific risk assessment, an
expert may decide upon:

RAC processing fk,nom fk,upp

pear washing 0.5 0.8

In the Monte Carlo modelling, processing factors can be used in either of three ways (for each
commodity k to be chosen by the user):
1. (no processing factor) Just take fk = 1. This is in most (though not all) cases a worst-case

assumption. No data on processing are needed and therefore this route is useful in a first tier
approach.

2. (fixed value) Use fk = fk,upp. Available information on specific processing effects is used, although
still in a cautionary way (in accordance with the precautionary principle). Note that  fk,nom values
need not to be specified.

3. (distribution based) Sample fk using a normal distribution. Log or logit transformed values of fk,nom

and fk,upp are used to define the first two moments of the normal distribution. Two situations are
distinguished depending on the type of transformation.
a) The logarithms of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper

confidence limit of a normal distribution. This normal distribution thus is specified by a mean
ln(fk,nom) and a standard deviation {ln(fk,upp) – ln(fk,nom)}/1.645. Values are drawn from this
distribution in the Monte Carlo simulations. Processing factors fk will be nonnegative. Note:
fk,upp and fk,nom values equal to 0 are replaced by a low user-specified value (e.g. 0.01); this is
useful computationally to avoid problems with logarithms.

b) The logits of fk,nom and fk,upp are equated to the mean and the 95% one-sided upper confidence
limit of a normal distribution. This normal distribution thus is specified by a mean logit(fk,nom)
and a standard deviation {logit(fk,upp) – logit(fk,nom)}/1.645. Values are drawn from this
distribution in the Monte Carlo simulations. Processing factors fk will be between 0 and 1.
Note: fk,upp and fk,nom values equal to 0 and 1 are replaced by user-specified values (e.g. 0.01
and 0.99); this is useful computationally to avoid problems with logits.

The user should keep in mind that, in case of a lognormal distribution, fk,nom defines the median,
while fk,upp quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the
standard transformation, but for very skew distributions (see Figure 1) occasionally values above
1 are sampled (upper row, 1rst, 3rd and 5th plot). A logit transformation should be considered
instead.
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Figure 1: Lognormal (upper row) and logistic (lower row) distributions for various values of
fk,nom (= nom) and fk,upp (= upp)
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3.2.3  Modelling of unit variability

3.2.3.1 Introduction, variability in deterministic modelling
Variability in residue concentrations between individual units is a relevant factor in the assessment of
short-term dietary exposure to chemical residues. It is addressed separately because monitoring
measurements cmk are typically made on homogenised composite samples, both in controlled field
trials and in food monitoring programs. Such a composite sample for product k is composed of nuk

units with nominal unit weight wuk each. The weight of a composite sample is therefore wmk = nuk �
wuk . This weight is often larger than a consumer portion, e.g. a typical composite sample of 20 sweet
peppers weighs 3.2 kg, whereas daily consumer portion weights in the Dutch Food Consumption
Survey 1997 ranged from 0.08 g to 458 g.
How should monitoring data be used to estimate the raw commodity concentration levels crijk in
consumer portions? Although the mean level of cmk may be a fair estimate of the mean level of crijk,
the variability of cmk is not appropriate to estimate the variability of crijk. In smaller portions more
extreme values may occur more readily, and thus acute risks may be higher than would follow from a
direct use of the composite sample data.
Therefore, the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the
non-probabilistic calculation of an international estimate of short-term intake (IESTI) (FAO/WHO
1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide
Residues in food in 1999, and was modified in 2000 to reflect that the supply for actual consumption
on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the original and
the modified definition, the variability factor is used in a similar way. The basic idea is that the
residue concentration for the first unit eaten is multiplied by v, whereas this factor is not applied for
any remaining part of the daily consumption.

In the original presentation v was meant to reflect “the ratio of a highest level of residue in the
individual commodity unit to the corresponding residue level seen in the composite sample”
(FAO/WHO 1997). It was not clearly stated what was meant with “a highest level”. Should this be the
maximum level found or should it be a high percentile, e.g. p95 or p97.5? In practical terms this did
not matter too much, because little data were available. Therefore the FAO/WHO Consultation
recommended to take initial values of v equal to “the number of units in the composite sample as
given in Codex sampling protocols”. This will provide a conservative estimate of the residue
concentration in the first unit, based on the assumption that all of the residues present in the composite
sample are present in this single unit. If Codex sampling protocols are used, then the number of units
per composite sample is 5 for large crops (unit weights > 250 g) and 10 for medium crops (unit
weights 25-250 g). For small crops (< 25 g) a variability factor v = 1 was recommended. More
recently, it has been proposed to replace the default value 10 with 7. For commodities which are
processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, a variability factor v = 1 is
proposed. To summarise:

unit weight, wu FAO/WHO default variability factor, v
< 25 g
25 -250 g
> 250 g
juicing, marmalade/jam, sauce/puree

1
7
5
1

Table 1: Default variability factors for IESTI calculations.

The Consultation specifically recommended to replace these default values with more realistic values
obtained from studies on actually measured units. A working group of the International Conference on
Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to
define v, for samples taken from controlled trials, as the 97.5th percentile of the unit levels divided by
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the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the
definining relation.

3.2.3.2  Approaches to unit variability in probabilistic modelling
How should variability between units be incorporated in probabilistic modelling of acute risks? In
probabilistic modelling we generate consumption amounts and residue concentrations which will be
multiplied and summed over products to estimate the intake. However, the residue concentration cmk

will usually be derived from a distribution based on measurements on composite samples. Assume
that a batch of product contains N units (N large, for the statistics we assume infinite). The monitoring
measurement cmk is made on a composite sample of nuk units (for example, nuk = 5). These units are
assumed to be representative of the batch. Unit concentrations crijk are to be simulated for one or more
units from this batch that will be part of a consumption portion in the Monte Carlo simulation.
Basicly, there are three possibilities depending on the availability of data:
1. use actual measurement data on individual units;
2. use variability factors or other summary statistics based on measured individual units;
3. use conservative assumptions.
In MCRA only methods under categories 2 and 3 are implemented. The first approach has been
pioneered in the context of a large UK survey on pesticides in fruit (Hamey 2000).

In MCRA the following three models, discussed below in more detail, are implemented:
1. Beta model, requires knowledge of the number of units in a composite sample, and of the

variability between units (realistic or conservative estimates);
2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results

are always conservative);
3. Lognormal model, requires only knowledge of the variability between units (realistic or

conservative estimates).

Preferably realistic estimates of unit variability are to be used, either expresssed as coefficients of
variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as
97.5th percentile divided by mean).  However, often such information is not directly available. In such
cases it is customary to select high values for the variability factor, either based on collections of
variability factors for other compounds/products, or  calculated as the theoretical maximum derived
from the number of units in  a composite sample.

How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model
a higher value of v gives a higher IESTI, but in a stochastic model a higher variability means more
spread around a central value. In general this means that higher values, but also lower values can be
generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated
values below the monitoring level (cmk) with cmk itself.

It is common to use default conservative values, such as the FAO/WHO variability factors in Table 1.
However, one should be aware that two entirely different interpretations are possible:
1. The default variability factor may be defined in the same way as a data-based variability factor (v

= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual
data sets from trials, that a certain value v can be used as a conservative value for other situations
(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model,
censoring these distributions at cmk to guarantee conservative behaviour. For the beta model
additional information on the number of units in a composite sample is needed.

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors
as the number of units in the composite sample (v = nuk). In this case, without other information,
the only workable model is the Bernoulli model.
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3.2.3.2.1 Beta model for unit variability
With this model MCRA will generate values for individual unmeasured units of a measured
composite sample. If cmk is the concentration measured (or simulated) for the composite sample in
monitoring for commodity k, then the concentration in any unit can be no larger than cmax = nuk * cmk ,
where nuk is the number of units in the composite sample. Under the Beta model simulated unit values
are drawn from a bounded distribution on the interval (0, cmax). The parameter for unit variability is
specified as a coefficient of variation cvk of the unit values in the composite sample, or as a variability
factor.
The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two
parameters a and b, with a>0 , b>0 (see e.g. Mood et al. 1974).  Alternatively, it can be parameterised
by the mean µ=a/(a+b) and the variance s2=ab(a+b+1)-1(a+b)-2, or, as applied in MCRA, by the
mean µ  and the squared coefficient of variation cv2=ba-1(a+b+1)-1. Note that the coefficient of
variation is the same for the unscaled and the scaled distributions.
For the simulated unit values in each iteration of the program we require an expected value cmk. This
scales down to a mean value µ = cmk/cmax = 1/nuk  in the (standard) beta distribution. From this value
for µ  and an externally specified value for cvk the parameters a and b of the beta distribution are
calculated as:

( ) 11
�-= knuba

( )( )
2

211

kk

kkk

cvnu
cvnunu

b
---=

From the second formula it can be seen that cvk should not be larger than 1-knu  in order to avoid

negative values for b.

When the unit variability is specified by a variability factor 
k

k
k cm

p
v

5.97=  instead of a coefficient of

variation cvk then MCRA applies a bisection algorithm to find a such that the cumulative probability
975.0)],([ =baBetaP for ( )1-= knuab .

Sampled values from the beta distribution are rescaled by multiplication with cmax to unit
concentrations crijk on the interval (0,cmax).
In the case that variability has been estimated by a conservative high value, all sampled values lower
than cmk are replaced by cmk.

In Figure 2 for several values of the coefficient of variation and number of units the beta distribution
is shown with estimated parameters a and b. When the parameter for unit variability is high (upper
left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at crijk = cmk  and
25% probability at crijk = cmax. In the upper right plot, the parameter for unit variability is smaller and
some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which
is according to the number of units in the composite sample. In the lower left plot, variability is low
and unit values are sampled around the monitoring residue. In the extreme case, when unit variability
is close to zero the monitoring residue itself is sampled and a spike occurs (not shown ). The lower
right plot show an intermediate situation, moderate to high variability.
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cvk =0.43; nuk=4; a=0.0001; b=0.0001 cvk =0.20; nuk=6; a=0.4; b=2

cvk=0.10; nuk=6; a=2; b=10 cvk =0.37; nuk=4; a=0.1; b=0.3

Figure 2: Standard Beta distribution for different values of the coefficient of variation cvk and
number of units nuk in the composite sample. x axis from 0 to 1.

3.2.3.2.2 Bernoulli model for unit variability
The Bernoulli model is a limiting case of the Beta model, which can be used if no information on unit
variability is available, but only the number of units in a composite sample is known.  As a worst case
approach we may take cvk as large as possible. When cvk is equal to the maximum possible

value 1-knu , the (unstandardized) Beta distribution simplifies to a Bernoulli distribution with

probability (nuk – 1)/nuk for the value 0 and probability 1/nuk for the value cmax = nuk * cmk..
In MCRA values 0 are actually replaced by cmk, to keep all values on the conservative side. For
example, with nuk = 5, there will be 80% probability at crijk = cmk and 20% probability at crijk = cmax..

3.2.3.2.3 Lognormal model for unit variability
With the Beta and Bernoulli models, MCRA simulates concentrations for units in the composite
sample, such that the residue level of an individual unit can never be higher than the monitoring
measurement multiplied by the number of units in the composite sample cmax = nuk * cmk .
With the Lognormal model for unit variability MCRA simulates concentrations for new units in the
batch from which the composite sample was taken. Effectively the number of units in a batch is very
large, so in this case there is no practical upper limit to the residue level that can be present.
The lognormal distribution is considered as an appropriate model for many empirical positive residue
level distributions. With the Lognormal model MCRA assumes a lognormal distribution for unit
residue concentrations. Let this distribution be characterised by  and , which are the mean and
standard deviation of the log-transformed concentrations. The unit log-concentrations are drawn from
a normal distribution with mean ( )ikcmln=m .
Also for the Lognormal model MCRA allows two choices to specify the parameter for the unit
variability. The parameter is specified as a coefficient of variation (cvk)  or as a variability factor (vk).
The coefficient of variation cv is turned into the standard deviation  on the log-transformed scale
with:

 = ¥OQ�cv2 + 1)

A variability factor v is converted into the standard deviation  as follows:
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with  and  representing the mean and standard deviation of the log-transformed concentrations. So

 ln(v) = 1.96 �±���� 2

Solving for  gives: 2 – 2*1.96  – 2log(v) = 0, with roots for  according to:

  = 1.96 � ¥�����2 +2log(v))

The smallest positive root is taken as an estimate for  (see also 3.5.3.2 ).

In the case that variability has been estimated by a conservative high value, all sampled values lower
than cmk are replaced by cmk.

3.2.3.3  Estimation of intake values using the concept of unit variability

� For each iteration i in the Monte Carlo simulation, obtain for each commodity k a simulated
intake xik , and a simulated composite sample residue concentration cmik .� Calculate the number of unit intakes nuxik in xik (round upwards) and set weights wikl equal to unit
weight wuk, except for the last partial intake, which has weight ( ) kikikikl wunuxxw 1--= .

� For the Beta or Bernoulli distribution: draw nuxik simulated values ikl from a Beta or Bernoulli
distribution. Calculate concentration values as cikl =  ikl * cmk, max = ikl * cmk * nuk. Sum to obtain
the simulated concentration in the consumed portion:

ik

nux

l
ikliklik xcwcr

ikÊ
�

=
1

� For the Lognormal distribution: draw nuxik simulated logconcentration values lcikl from a normal
distribution with mean ( )ikcmln=m  and standard deviation ��Backtransform and sum to obtain
the simulated concentration in the consumed portion:

ik

nux

l

lc
iklik xewcr

ik
iklÊ

�

=
1
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3.2.4   Modelling of missing data and non-detects
Missing data should be indicated by 9999 in the database tables. In principle such values are ignored
in the analysis.
Most monitoring measurements of chemical substances are nondetects, i.e. no quantitative
measurement is reported. For this reason data are entered in the Concentration table by specifying the
total number of measurements made together with the limit of reporting (LOR). We use LOR to mean
exactly what term says: measurements below LOR are not reported, whereas values equal to or higher
than LOR are represented by numerical values in the database.
In the analytical and food risk fields analytical limits are often indicated as LOD (limit of detection)
or LOQ (limit of quantification). Unfortunately, it is not always clear what is meant with these terms.
In any case official recommendations are to always report any available numerical values even if they
are below LOD or LOQ limits (IUPAC 1995).
For legal applications of compounds data may be available about the percentage of the crop which
receives treatment. When a chemical substance can enter the food chain only via crop treatment, and
when the percentage of crop treated is (approximately) known to be 100pcrop-treated, then this
knowledge may be used to infer that 100(1-pcrop-treated)% of the monitoring measurements should be
real zeroes, contributing nothing to pesticide intake, whereas other nondetects in the monitoring data
could have any value below the LOR. For 100(pnon-detect + pcrop-treated - 100)% of the monitoring
measurements, 0 and LOR represent best-case and worst-case estimates. A simple way (tier 1
approach) to consider the uncertainty associated with nondetects is to compare intake distributions for
these best-case and worst-case situations.

3.3 Comparison of probabilistic with deterministic estimates of acute risk
The IESTI (International Estimated Short-Term Intake) is a deterministic estimate of the short-term
intake of a residue on the basis of the assumptions of high daily food consumption per person and
highest residues from supervised trials. The IESTI is expressed per kg body weight and has only been
defined for single products.
MCRA calculates IESTI for comparison with Monte Carlo percentiles.
Calculations of IESTI (according to FAO 2002) recognize four different case (1, 2a, 2b and 3). In
cases 1 to 3 the following definitions are used:

LP: Highest large portion reported, calculated as the 97.5th percentile of the distribution of
consumed portions on days with positive consumption of the product (kg food/day)

HR: Highest residue in composite sample, mg/kg
     bw: Mean body weight, kg; in MCRA values may be input by the user, or weighted means

are calculated over consumers with the number of days on which they consumed the
product as weights

U: Unit weight of the edible portion, kg.
v: Variability factor – the factor applied to the composite residue to estimate the residue

level in a high-residue unit
MR: Median residue in commodity, mg/kg

Although the FAO Manual refers to supervised trials only, MCRA calculates residue levels (HR or
MR) from any residue concentration data set supplied (may also be monitoring data).
Residue levels (HR or MR) may be multiplied with a processing factor on beforehand, in MCRA this
depends on the options chosen for processing.

Case 1:
The residue in a composite sample reflects the residue level in meal-sized portion of the commodity
(unit weight is below 25 gr).

IESTI = 
bw

HRLP *
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Case 2:
The meal sized-portion, such as a single fruit or vegetable unit might have a higher residue than the
composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into case
2a and 2b.

Case 2a:
Unit edible weight of raw commodity is less than large portion weight.

IESTI = 
bw

HRULPvHRU *)(** -+

The formula is based on the assumption that the first unit contains residues at the HR*v level and the
next one contains residues at the HR level, which represents the residue in the composite from the
same lot as the first one.

Case 2b:
Unit edible weight of raw commodity exceeds large portion weight.

IESTI = 
bw

vHRLP **

The formula is based on the assumption that there is only one consumed unit and it contains residues
at the HR*v level.

Case 3:
For those processed commodities where bulking or blending means that the median represents the
likely highest residue.

IESTI = 
bw

MRLP *

When an acute reference dose is available, the calculated IESTI values are also expressed as a
percentage of the acute RfD.

IESTI is a determistic estimate to reflect the unit variability within a composite sample. In the
probabilistic approach, unit variability is explicitly modelled and the result is an estimate of the intake
distribution (per commodity). These two different approaches handle the same problem, but it is
undefined to which Monte Carlo percentile the IESTI value should be compared. In MCRA the user is
free to choose a percentage point for this comparison.

A point to note is that IESTI is calculated from positive consumptions on each separate commodity.
To allow a fair comparison, the Monte Carlo percentiles are calculated in the same way. Note,
however, that in a multi-commodity Monte Carlo analysis, even if one restricts the attention to
consumption days only, the percentiles are typically based on consumption data which are partly zero
(days with consumption zero for some but not all commodities).

3.4  Binning
Binning is a method to summarize the simulated data (total intake, intake per product, consumption
per product, concentration per product) in frequency intervals for further use in deriving the exposure
distributions. The alternative would be to store observations for subsequent use, but this would require
for moderate simulations already a large amount of storage capacity and an excessive  administration.
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The mean value of the observations in the first chunk of the simulation (mean) is used to define the
left limit of the central bin. For values above the mean, 1100 bins are used for storage. The upper
limits of the upper bins are defined as 1 % higher than the lower limit. So, for upper bin i the upper
limit is calculated as  mean x 1.01i. For values below the mean  also 1100 bins are defined with lower
limits defined by mean x 1.01-i. After the process of binning is completed, the quantile value of a
specific percentile is determined by linear interpolation between the bin limits. These 2200 bins
together provide efficient storage for numbers spanning more than 9 decades (1.012200=3.2x109),
which should be amply sufficient for most practical problems.
To get accurate results, it is rather important that the mean value in the first chunk represents,
approximately, the true mean of the sampled distribution. Therefore, chunk size (defined as the total
number of simulations divided by the number of chunks) should not be chosen too small. During the
simulation, the maximum of the sampled observations in each chunk is calculated. When this value is
higher than the upper limit of the last bin, representing a potential maximum, this bin limit is replaced
by the new maximum, and a warning is issued. When the mean value is missing, e.g. due to zero
intakes, the program resorts to an average mean value, e.g. the average of the mean values of
commodities with nonzero intakes. Also in this case a warning is given.

3.5  How to deal with limited information
In the probabilistic model, a distribution of food consumption data as well as a distribution of residue
data are used. For both components of the model, a choice can be made between a non-parametric
(see 3.2.1.1 ) or a parametric (see 3.2.1.2 ) approach. In a parametric approach the data are modelled
with an appropriate distributional form (e.g. lognormal with parameters  and ). In a non-parametric
approach the empirical distribution is used to sample from directly. Obviously, the latter approach
requires more data to obtain a satisfying representation of the full distribution. Therefore, parametric
modelling becomes important in data-scarce situations (see 3.5.1 ).
Occasionally, limited information emerge not as a consequence of the amount of data but how they
are presented: data are reported using e.g. the mean and variance (see 3.5.3 ) or data are summarized
as counts of observations falling into a series of classes (see 3.5.2 ). It is evident that a parametric
approach is the only way out and that the parameters of the lognormal distribution should be inferred
using the available data.
If for some commodities there are far less data than for others, it may be sensible to consider pooling
procedures for means and or variances of the concentration distributions (see 3.5.4 ).
If the amount of data is limited, this may lead to a relatively large sampling uncertainty. Bootstrap
procedures may be used to assess the magnitude of this uncertainty (see 3.5.5 ).

3.5.1  The choice between a parametric and non-parametric approach
How many residue data are required for a sensible calculation of upper-tail percentiles in the exposure
distribution based on a non-parametric approach? The rule of thumb can be used that the chosen
percentile should be contained directly in the data. For example, at least 20 measurements are needed
to estimate the 95th percentile and at least 100 measurements to estimate the 99th percentile. More
generally, the number of measurements per food commodity (n) should at least equal 1/(1-p%/100) to
allow a rough empirical estimate of the pth percentile of the residue concentration distribution to be
made. Of course, the risk assessment is only coarse with this minimum amount of data and larger
sample sizes per food commodity are certainly worthwhile.
In situations where the number of measurements becomes a problem, an appropriate risk analysis
should be based on further modelling. Essentially, the lack of data is compensated by a priori
assumptions. Assuming a simple distributional form for the residue data, the number of measurements
can be smaller in principle (at least 10, say). However, non-detect measurements provide no
information about variability, and therefore we should now count the number of positive
measurements. Figure 3 shows which approach could be best used depending on the total number of
measurements and the number of non-zero measurements. In principle, such a choice could be made
separately for each food commodity.
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Figure 3: Use of non-parametric or parametric modelling for estimating 99 % exposure
percentile in relation to sample size and number of positive measurements.

3.5.2  Estimation based on histogram data
In EU reporting, residue data are sometimes reported in a tabulated (histogram) form: data are
expressed as counts of observations falling into a series of groups. The observed counts are n1…nc,

which fall into c classes with limits c1…cc. The number n1 is the number of positive (detect) samples,
which are nevertheless below the LOR (= c1); n2 is the number of positive samples that fall in between
limits c1 and c2,…,; nc is the number of samples that fall in between limits cc-1 and cc.
For histogram data, parameters  and  of the lognormal distribution can be obtained by fitting a
normal distribution to a set of observations n1…nc. In an iterative way, expected counts for a
standardised normal variable are calculated using the log-transformed group limits. Each round,
parameters are updated until the process converges.

3.5.3  Estimation based on summary data
Occasionally, data are reported in a very condensed form. Summary statistics like the mean, quantiles
and dispersion measures as the variance or the coefficient of variation are used to describe
characteristics of the underlying residue distributions. The reported statistics are calculated using all
values (with concentrations below LOR sometimes replaced by ½*LOR), or using positive values
(detects) only. In order to use the binomial-lognormal model, summary statistics based on all values
must be corrected for the values replacing the concentrations below LOR. For the mean, the
correction is straightforward, taking a zero or the midpoint-value (½*LOR). Likewise, the standard
deviation or any measure of dispersion is corrected for the sum of squares due to all zero values and
taking into account the corrected mean. The median is also corrected, but instead of correcting the
value itself, a corrected quantile zq is calculated corresponding to q, the lower fraction and zq

satisfying:

zq = -1{q} =  -1{(½N – n0)/(N – n0)}

with (.), the cumulative probability function of the standard normal distribution, N, the total number
of samples and n0, the number of zero’ s.
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The maximum is the largest order statistic. Its expected value can be approximated by taking the
appropriate population quantile, especially in large samples. Here, the problem is the other way
around: the population quantile corresponding to the largest value given the sample size is to be
estimated. For sufficiently large N an approximation to E(qmax) is provided by the value of zq

satisfying �]q) = N/(N+1). Blom (1958) and Harter (1961) made the following suggestions for
smaller sample sizes:

 zq� � -1{(N - a)/(N - 2a + 1)}

With a = .315065 + .057974u - .009776u2 and u = log10N. Over a wide range of N a approximates the
value 3/8. This empirical formula is a very accurate approximation to the exact value of E(qmax) and is
used to estimated appropriate population quantiles for qmax. (David, 1970; Pearson and Hartley, 1972 ;
Blom, 1958; Harter, 1961).

Three situations can be distinguished:
1) the reported information is insufficient to estimate both  and , or
2) the reported statistics are sufficient to extract  and , or
3) the information is redundant so various estimates for  and  are available.

Here, we first consider approaches for situation 2. Situation 1 requires additional information: a
solution might be to use the information on comparable product-residue combinations to assess the
necessary estimates. Situation 3, basically, is a pooling problem how to weigh and combine estimates
that originate from different statistics.

3.5.3.1 Moments and other characteristics
A positive random variable X is said to be lognormally distributed with parameters µ  and 2 if Y = lnX
is normally distributed with mean  and variance 2. The probability density function of X is:

f(x) = 1/(»2p [) exp(-(lnx - )2/2 2).

The corresponding normal distribution for Y is denoted by N� �� 2).

Estimation of  and   using summary statistics is based on equations and characteristics derived from
the moment generating function of the lognormal distribution. Required parameters are estimated by
solving the formula’ s of the first two moments for �and �
The following characteristics for variable X derived from the moment generating function are given:

mean: exp(m + 1/2 2) (1)
variance: exp(2  + 2)(exp� 2) – 1) (2)
mode: exp(  - 2) (3)
quantile (qq): exp(  + zq ), (4)
vc: ¥�H[S� 2) – 1) (5)

with vc the coefficient of variation, q a given lower fraction and zq the corresponding standard normal
deviate. The 50th quantile, the median, is a special case with zq = 0. The geometric mean of X is equal
to the median.

3.5.3.2 Estimation
Approach 1: estimation based on two quantiles, qq1 ��qq2.

Using (4) gives:
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 � = log(qq1/qq2) / (zq1 – zq2). Substituting   yields �
Approach 2: estimation based on a quantile and the mean.

Solving for   using (1) and (4) gives:

2 – 2zq   - 2log(mean/qq) = 0, with roots for � according to:

 zq  � ¥(zq
2 + 2log(mean/qq )) (6)

For moderate to small sample sizes the estimation of  fails because the discriminant is negative, i.c.
the argument of the square root function. Empirical simulations show that a negative discriminant
happens more often for small sample sizes and for estimation based on extreme quantiles like the
maximum. Figure 4 shows the empirical relation between the sample size and the fraction of failures
for estimation methods involving the mean with respectively, the maximum and median. For the
maximum, failures occur already at sample sizes n = 30 to 40, for the median n = 15 to 20. Negative
discriminants occur when estimation is based on empirical (sampled) values instead of theoretical
(calculated) values assuming a normal underlying distribution. The amount of failures for small
sample sizes is in accordance with large sample theory. When the maximum is involved and
estimation fails, an estimate of  is assessed by equating the discriminant to zero. Empirical results
show that this works out very well for sample size n > 4, although �is slightly biased upwards being a
conservative estimate. In case of the median no solution to this problem is available so the estimate of
 is set to a missing value.

Figure 4: Simulated fraction of failures versus sample size for estimation of s based on the
mean and respectively the maximum and median

In general, for n large enough, say n > 40,  has two roots. Usually, the mean is larger than the
median. Then,   is estimated with:

zq  + ¥( zq
2 + 2log(mean/median)) with condition   > 2zq..  

In case of the mean and maximum � is estimated with:

zq  - ¥( zq
2 + 2log(mean/max )) with condition   < 2zq..

Note, that max is always greater than the mean. Here, the smallest root is taken as an estimate because
empirical results show that the largest root yields unlikely high measures of dispersion and therefore
should be rejected.

Simulation results
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Approach 3: estimation based on mean and variance or coefficient of variation.

The coefficient of variation, vc =  ¥�YDULDQFH��PHDQ��8VLQJ������SDUDPHWHU� � is estimated with:

 ¥�ORJ�YF2 + 1))

and  is estimated solving (1).

Approach 4: estimation based on a quantile and coefficient of variation
�

.

For estimation of , see approach 3. Using (4), parameter  is estimated with:

log(quantile) - zq

For the median, estimation of  simplifies to:

log(median)

3.5.4  Grouping of products, pooling of means and variances
When data are limited, it may be advantageous to apply the parametric approach for modelling of the
positive concentrations. In MCRA the positive concentrations are modelled as lognormal with
parameters  and 2, representing mean and variance of the natural logarithm of the concentrations.
However, estimation is often hampered because data on residues in specific food commodities are
sparse or even missing. In those cases, grouping of products into product groups enlarges the number
of measurements per group and may give sufficient data to base estimates upon. We must assume that
residue distributions are the same for the grouped products. A second related question is the reliability
of estimates, based on a few number of degrees of freedom. The following procedure is designed to
cope with the above problems.
1. Pooling variances within product groups. For each product the variance 2 and mean  is

estimated. Then, products are assigned to product groups which are composed of related products,
e.g. a productgroup containing sorts of cabbages or a group containing all kind of berries.
Products where agricultural use is allowed aremain separate from products where agricultural use
is not allowed. The homogeneity of variances in the different product groups is assessed using
Bartlett’s test (Snedecor & Cochran, 1980). The test statistic determines whether variances within
a group are to be pooled automatically (p > 0.05) or not (p y 0.05).

2. Pooling means within product groups. After pooling the variances, an overall test for
differences of means within each group is performed, based on analysis of variance. Means within
groups are pooled automatically if the probability p > 0.05.

3. Using overall variance if there are < 10 degrees of freedom. Estimates of variances based on
less than 10 df are considered not very reliable. Therefore, variances based on < 10 df are
compared to the overall variance (pooled over all products except the tested product itself, i.c.
corrected) and tested for equality. Variances are replaced by the overall variance (uncorrected)
whenever the hypothesis of equality of variances is not rejected; if rejected, the original variances
are maintained.

4. If the variance for (sub)groups with two or more members is replaced, a test for differences of
means is performed. Means are pooled automatically if p > 0.05, if not, the original means are
maintained.

                                                     
	

 Not yet implemented



24

For a parametric risk assessment all variances and means must be present. This requirement implies
that very often rearrangement of products into (sub)groups preceeds the actual simulation of the
intake distribution.

To summarize, actions are:
� calculate variances and means for each product
� classify products into groups
� test homogeneity of variances and equality of means within groups of products. Results are: not

significant (p > 0.05) or significant (p � 0.05).
� take products(-groups) with df < 10
� compare variance with overall variance (corrected). Replace variance with overall variance

(uncorrected) for non-significant test results.

3.5.5   Assessing the uncertainty of risk assessments by bootstrapping data sets
In probabilistic risk assessment of dietary intake we use distributions which describe the variability in
consumption within a given population of consumers and the variability of the occurrence and level of
chemical residues on the consumed commodities. However, these calculations do not consider the
amount of uncertainty that is due to the limited size of the underlying datasets. Typically, in a large
number of simulations very many different combinations of consumption and residue concentrations
are made. This leads to a smooth distribution of simulated intakes, and the impression of a very
precise estimation of exposure percentiles or other quantities of interest. It is essential to realise that
the accuracy of the inference depends on the accuracy of the basic data.

A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron
& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a
dataset of n observations to obtain a bootstrap sample of again n observations (sampling with
replacement, that is: each observation has a probability of 1/n to be selected at any position in the new
bootstrap sample). By repeating this process B times, one can obtain B bootstrap samples, which may
be considered as alternative data sets that might have been obtained during sampling from the
population of interest. Any statistic that can be calculated from the original dataset (e.g. the mean, the
standard deviation, the 95th percentile, etc.) can also be calculated from each of the B bootstrap
samples. This generates a bootstrap distribution for the statistic under consideration. The bootstrap
distribution characterizes the uncertainty of the inference due to the sampling uncertainty of the
original dataset: it shows which statistics could have been obtained  if random sampling from the
population would have generated another sample than the one actually observed.

In Monte Carlo modelling of acute risks two datasets are combined: consumption data and residue
concentration data. It makes sense to apply bootstrapping to both datasets separately, in order to
characterize the uncertainty in the final exposure. In MCRA the bootstrap algorithm (when selected)
is applied to:
1. the multivariate consumption patterns and associated body weights: actually the data set of

consumer identifiers is bootstrapped, and all consumer information (consumption patterns for all
consumption days, body weight, age) is coupled to the selected consumer identifiers.

2. the univariate residue concentration data sets: these are bootstrapped independently for all
commodities. In principle, the bootstrap algorithm is applied to the dataset consisting of both
nondetects and positive values; in practice, for a dataset with n0 nondetects and n1 positive values,
the number of positive values in a bootstrap sample is obtained as a draw from a binomial
distribution with parameter ( )101 nnn +  and binomial total 10 nn + . Then, this number of values
is selected randomly from the set of n1 positive values.

In MCRA the resulting bootstrap distribution of percentiles of the exposure distribution is
summarized by specifying empirical 2.5th , 25th, 75th and 97.5th percentiles. The outer percentiles
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constitute a central 95% confidence interval for the variability percentiles. However, for this it is
necessary that the number of bootstrap samples B is high enough. The number of bootstrap samples
should be chosen depending on the confidence level wanted for the uncertainty interval. Typically
500-2000 bootstrap sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993,
pp. 14-15, 275).

The same bootstrap algorithm can also be applied to deterministic estimates which are calculated from
data sets. For example the maximum residue value found in a bootstrap sample will be different, if the
actual maximum value in the original dataset has not been selected. Also data-based estimates of large
portion and average body weight will vary.

3.6  Chronic risk assessment
So far, we discussed a probabilistic model allowing for effects of processing, incorporating unit
variability and using information on percent crop treated. Through Monte Carlo simulations an
estimate of the probability distribution is generated to assess acute risks by intake of the chemical
substance. With the right assumptions, we may use this concept for chronic risk assessment.

3.6.1  Introduction
In dietary risk assessment, usual intake is defined as the long-run average of daily intakes of a dietary
component by an individual. From a statistical point of view, assessing the usual intake can be
reduced to the problem of estimating the distribution of a random variable yi that is measured with
error. A model for the relationship between the observations yij and the true random variable of
interest yi is:

yij = yi + uij

where uij is an additive measurement error for individual i on day j. For independent, normally
distributed yi and uij, estimation of the distribution of yi is straightforward. When observations yij are
non-normal and the measurement error variance is heterogeneous across sampling units, estimation is
less simple. Nusser et al. (1996) describe a procedure for estimating the percentiles of the distribution
of long-run average daily intakes using non-normal dietary intake data. Principally, their method
consists of three steps:
1. transforming the daily intake data to approximate normality using a combination of a power

function and a grafted polynomial function. The polynomial provides some flexibility against
power transformed components that are still deviating from normality,

2. estimating the parameters of the usual intake distribution in the transformed scale, and
3. estimating the percentiles of the distribution of usual intakes in the original scale.
The basic ideas of Nusser et al. are suited for dietary components that are consumed on a nearly daily
basis, e.g. dioxin in fish, meat or diary products.

3.6.2  Modelling long term daily intake
Thanks to the assumed independence of consumption and residue concentrations (a most reasonable
assumption) the modelling of usual intake simplifies to a univariate stochastic model for intakes
Usually, food consumption data are available for individuals on 2 (or more) consecutive days. For
each individual, the intake on day j is estimated by multiplying the consumptions with the average
value of the residues (detects and nondetects) found on each commodity. We assume an equal number
of days for each individual. This is in confirmity with our method of reporting consumption only. As a
consequence, days without consumptions do have zero intake.

The model for the usual intake distribution is:

yij = yi + uij
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with yij the observed intake of individual i on day j, yi is the unobservable usual intake value for
individual i, and uij is the unobservable measurement error for individual i with i = 1…n on day j with
j = 1…o. In the normal scale, yi  ~ N( �� 2

cons), uij ~ N(0�� 2
day).

3.6.2.1 Step 1: power transformation and spline function
The observations yij are transformed close to normality using a power transformation. As indicated by
Tukey (1962), the expected value of a normal score z = (\� ��  can be approximated by the U-score:

)]4/1/()8/3[(1 +-F= 


NrU lij

where rl is the rank of the ijth observation yij and N, the total number of observations (no. individuals x
no. days). The power g is estimated by minimising the error sum of squares:
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over a grid of values of g, where U(ij) and y(ij)  denote the order statistics of Uij and yij.
The observations are replaced by power transformed observations:




ijij yz =
After a power transformation, some components still deviate from normality. To minimise deviations
in the Y-direction an integrated B-spline is fitted to the ( ijij zU , ) pairs. The spline function is enforced

to be monotone increasing by constraining the parameters to be nonnegative. The knots of the spline
function are placed such that the interval lengths between knots are equal with two data points left to
the left knot and two right to the right knot. The number of knots is optional, here K = 7 is taken. In
the intervals, a cubic spline of order 3 is fitted, outside the joint left and right knot the spline is linear.
Observations that are transformed by a power in combination with a spline function are denoted by
zspline,ij. These values are approximate normally distributed.

3.6.2.2 Step 2: estimation of parameters of the usual intake distribution
The power transformed daily intakes are transformed having zero mean and unit variance:

z*
spline,ij = (zspline,ij – m̂ spline)/ŝ spline

Parameters of the standardised usual intake distribution in the normal scale are estimated assuming
the following model:

z*
spline,ij = zspline, i + uij

with variance components 2
cons estimating the variability between consumers, and 2

day, estimating
the day to day variability within consumers. The variance components are estimated using standard
statistical methods (ANOVA). Their sum is close to 1 because the transformed data (indicated by the
asterisk) have mean 0 and variance 1. Normal equivalent deviates of the usual intake distribution
(mean 0 and variance 2

cons) are calculated using:

)100/(ˆ 1 pq betweenusual

�F= s
with p a percentage and consbetween ss ˆˆ = .
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3.6.2.3 Step 3: backtransformation and estimation of usual intake
Percentiles in the original scale are estimated by a linear interpolation using the ( *

,, ijsplineij zU ) pairs:

qusual specifies the values for which interpolated z*-values are required. The interpolated standardised
values, say z*

usual, spline, are transformed to the original scale by the inverse of the power and correcting
for the variance and the mean of the original variable:

zusual, spline = (z*
usual, spline* ŝ spline + m̂ spline)

� �
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4  Appendix

4.1 Procedures in the MCRA program
A procedure library MCRA.LIB is attached to the program MCRA. This library contains a collection
of procedures which are used during a MCRA risk assessment. In the following sections, the
procedures are arranged into blocks and shortly described.

4.1.1   Loading input data
The MCRA User Manual (de Boer et al., 2003) describes the (format of the) data files needed to
perform a risk assessment and all optional files (depending on options chosen in the MCRA-INPUT
menu).

PRODLABREAD: reads commodity-labels and levels (PNRLEV). Reads indicator value if residue is
allowed or not on a commodity from file xxxx_pro.lis. Prints number of commodities (NPNR).
CMPLABREAD: reads residue-label (compound) from file xxxx_cmp.lis. Prints residue code and
label.
INDIVIDUALSREAD: reads consumer characteristics (PERSNR, PLEEF, PGEWI) from file
xxxx.lis. Calculates the total number of consumers contained in the data base (PERSTAL) and the
minimum and maximum age (MINLEEF, MAXLEEF).
CONSUDATREAD: reads consumption data and processing codes from file xxxx_con.lis and stores
data in backingstorefile xxxx_con.bac. The procedure checks if a backingstorefile is present. If
present, data are directly read from this binary file which speeds up runtime considerably. Note that
existing backingstorefiles should be removed or deleted when new data become available. In general,
older consumer codes (RESP) do not match the newer ones in the consumption data file. Forms a
subset containing consumption-days only and prints a warning message.
SDATREAD: loads residue summary data from xxxx_sum.dat. Calculates parameters  and  of the
lognormal distribution.
HDATREAD: loads histogram data on residues from xxxx_histo.xls. Calculates parameters  and 
of the lognormal distribution.
FDATREAD: reads residue concentration data from file xxxx_res.lis and the total number of samples
taken on each commodity from file xxxx_nos.lis. Calculates mean residues, fraction of positive values
(detects) and number of zero residues (nondetects). Restricts the total set to a subset of commodities
on which residue concentration data are available. Calculates parameters  and  of the lognormal
distribution.

4.1.2  (Pre-)processing of datastructures
In this block, datastructures are pre-processed. In general, pre-processing is needed whenever the user
specifies restrictions or wishes to explore the effect of e.g. processing or unit variability. During pre-
processing, a number of warnings is generated when data are not according to the requested format or
when structures are incompatible due to internal errors or redundant, missing and/or unknown codes,
values and/or labels.
NPNRPRO: calculates new number of commodities or number of commodities/processing type
combinations.
PRESENT: generates a variate (PRES) indicating which commodities are present and sets a scalar
(SUBSET).
VFREAD: loads variability factors and unit weights from file xxxx_varf.xls. Replaces missing unit
weights by value 9999.
DEFVARFACREAD: stores default variability factors in variate and print information.
PFLABREAD: loads processing codes and labels from proccode.xls and makes new labels which are
combinations of commodity and type of processing. Checks if codes for consumed processed
commodities (xxxx_con.lis) are present in proccode.xls. If not, a warning message is printed.
Calculates the total number of commodities and processing type combinations (NPNR) and replaces
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the old value of NPNR (total number of commodities) by the new value. Forms new variates for unit
weights and variability factors by expanding the old structures according to the number of times each
commodity is processed. Replaces unit weights and variability factors of processing types 9, 11 and
13 by default values 9999 and 1, respectively. Contains %PRESENT.
DAY%CONSUDATREAD: calculates consumption data matrix for (un)processed commodities.
Checks if all labels for consumed commodities are present and prints a warning if unknown
commodities are present. Checks the number of days, levels of day and restricts days according to the
specified day (to the first day if restricted day does not exist). Prints a warning message if
consumptions on just one day are available. Applies age restrictions and performs pre-processing for a
printed summary of the data.
%CONSUDATREAD: calculates consumption data matrix for unprocessed or processed
commodities. Checks if all labels for consumed commodities are present and prints a warning if
unknown commodities are present. Creates variate with respondent and daynumbers for option
Consumers only. Note that the consumption data matrix contains all available days. Applies age
restrictions and performs pre-processing for a printed summary of the data.
CRTRREAD: loads data on percent crop treated.
PFDATREAD: loads available information on processing factors (fk) from xxxx_proc.xls and the
type of transformation for distribution based factors. If fk,upp and fk,nom are both missing, a value 1 is
inserted; if fk,upp is missing, it is replaced by fk,nom and vice versa; if fk,nom > fk,upp both values are
interchanged. For fixed processing factors, fk = fk,upp for commodities on which processing information
is available. Otherwise a default value 1 is inserted. For distribution based factors, means (= log or
logit transformed fk,nom) and variances (based on fk,upp  and fk,nom) are calculated. A warning is printed
when distribution based factors fk cannot be sampled because fk,nom is missing. For those commodities
fixed values are taken instead.
PRPFLAB: generates print information, e.g. labels for those commodities that are processed in two or
more ways.
CHCKS: The value of the upper quantile of the intake distribution needed for the summary report of
the upper tail is specified by the user. This value may conflict with the chunksize (S) and simulation
size (N).The following rules are used: a constant Qmax is defined as S/N*100*2. If the user supplied
value is smaller or equal than 100 – Qmax, then the current value is replaced by 100 – Qmax, and the
percentage of the upper tail equals Qmax. This rule applies when the user value is set too low (upper
tail is too large). On the other hand, when the supplied upper quantile is set too high compared to the
total simulation size, the upper quantile is reset to the default value 99.0%, which usually is sufficient.

4.1.3  Estimation of parameters of the lognormal
For a parametric simulation all parameters must be present. A pooling procedure with pop-up menu’ s
guides the user through the pooling process.
NVHOMOGE: new version of VHOMOGENEITY. Tests homogeneity of variance.
NMHOMOGE: tests homogeneity of means and performs automatically pooling for p >0.05.
POOLING: pools variances and means manually or automatically
TABPOOLING: prints a summary of the data after the pooling procedure (number of detects,
nondetects, fraction of detects, pooled parameters  and  of the lognormal distribution, the original
parameters on logscale before pooling, number of degrees of freedom of sigma after pooling,
productgroups e.g. groups of commodities arranged on common characteristics in combination with
allowance of the use of a residue on a commodity).
NOPOOLING: prints a summary of the data (number of detects, nondetects, fraction of detects,
parameters  and  of the lognormal distribution). For all commodities, parameters  and  need to be
present because parametric modelling is set without pooling. When some variances are missing, the
job is abandoned and a warning message is printed.

4.1.4  Simulation of exposure values
In this part, the exposure distribution is generated. The simulation is performed in chunks specified by
the user. In each cycle, relevant output is collected and stored for later use.
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GETCONSUMPTION: simulates consumption matrix e.g. selects randomly consumers for a
specified day or selects randomly consumers irrespective of day. Samples consumption days-only.
Calculates total consumption of each commodity and number of consumption occasions.
PFSIMU: calculates matrix with fixed processing factors or factors based on a normal distribution:
for each consumption occasion a processing factor is simulated. Backtransforms values according to
applied transformation, e.g. logarithm or logit.
VARFAC: calculates the number of units in a consumption and standard deviation based on
variability factors. Calculates the maximum number of units (VMAX) of all consumptions
irrespective of commodity. Generates print information about the commodity with the maximum
number of units found.
LORREPLACE: replaces missing values by LOR. All values are replaced or replacement is based on
the percent crop treated. In the latter case, the sum of the percentage of non-zero’ s (detects) and
number of LORs (replaced missing values) only approximately equals the percent crop treated
because in assigning LORs to zeros a randomisation step is involved.
_UNITINTAKES: simulates a residue matrix based on empirical data. Residues are simulated for
each consumption. When variability is incorporated in the model, VMAX times a new residue matrix
is simulated using the sampled value for a consumption and multiplied with consumer unit portions. If
option use variability is no, VMAX is set to 1. Prints a message about variability factors. For
processed commodities an expanded matrix is simulated with the number of columns equal to the
number of combinations of commodities and processing types. Missing values are replaced by LOR.
Residues are multiplied with processing factors. Calculates the total sum of the processing factors and
the total number of consumption occasions in order to calculate an mean processing factor. The intake
is calculated and the total number of positive residues. Contains VARFAC, LORREPLACE.
P_SIMU: simulates a residue matrix based on parametric modelling. Residues are simulated for each
consumption. When variability is incorporated in the model, VMAX times a new residue matrix is
simulated using the sampled value for a consumption and multiplied with consumer unit portions. If
option use variability is no, VMAX is set to 1. Prints a message about variability factors. For
processed commodities an expanded matrix is simulated with the number of columns equal to the
number of combinations of commodities and processing types. Missing values are replaced by LOR.
Residues are multiplied with processing factors. Calculates the total sum of the processing factors and
the total number of consumption occasions in order to calculate an mean processing factor. The intake
is calculated and the total number of positive residues. Contains VARFAC, LORREPLACE.
RESICALC: generates summary statistics for output.
T4ACALC: performs data processing in each cycle to generate the upper quantile of the intake
distribution and consumer characteristics of the top 10 intake. Simulation results of two successive
cycles are collected in new structures with two times the length of a chunksize. Then, calculations are
performed and various data structures with double length needed to produce output are sorted. The
intake results needed to summarise the upper quantile of the intake distribution are saved in structures
with the same length as a chunk. In the next cycle, these sorted results and new simulation results are
collected again and all calculations are repeated. Note that the process of simulating in cycles restricts
the value of the upper quantile. Specifying a too large upper tail may supersede the user supplied
value. See also procedure CHCKS.
T4BCALC: performs calculations to summarise the total intake distribution.

4.1.4.1 IESTI estimation
IESTI estimation is performed when unit variability is modelled.
IESTICONS: estimation of percentiles of high daily food consumption of bootstrapsamples.
MAXIESTIRES: estimation of highest residues per commodity of bootstrapsamples
IE_PFSIMU: applies processing on highest residues.
ESTST_IESTI: estimates IESTI of bootstrapsamples without unit variability.
ESTUV_IESTI: estimates IESTI of bootstrapsamples in case of unit variability.
ST_IESTI: estimates IESTI based on all consumption and residue data without unit variability.
UV_IESTI: estimates IESTI based on all consumption and residue data in case of unit variability.
BIN1COUNT: sets limits for bins based on the mean value in the first chunk. Performs binning.



31

BIN2COUNT: performs binning.
BIN3COUNT: calculates Monte Carlo percentiles
TAB8PRINT: calculates IESTI percentiles of bootstrap samples and prints information to file.
TABA8PRINT: calculates IESTI percentiles and prints information to file.

4.1.5  Chronic risk assessment
Chronic risk assessment and bootstrapping.
GAMMA: performs power transformation on intake distribution.
VCREML: estimates variance components.
%INTERPOLATE: interpolates backtransformed chronic percentiles according to Nusser.
NUSINTAKE: estimates daily intakes of consumers based on consumption and mean residue values.
NUSSER: estimates chronic exposure based on power or logtransformed intakes using a grafted
polynomial. Long term exposure is estimated for a specified percentage of nondetects. Prints
percentiles and cumulative percentiles for a specified value (years). Contains GAMMA, VCREML,
%INTERPOLATE, HTMHEAD, HTMCODE, HTMGEN, HTMBUT (nusserdiag.htm,
percentiles.dat, percentiles.htm).
NUSCONS: stores bootstrapped consumptions and coupled weights in matrix.
NUSRES: calculates mean residue values of bootstrapped residuals and performs processing.
NUSBOOTSTRAP: estimates chronic exposure (see NUSSER) and bootstrappercentiles.
NUSOUT: prints a summary of chronic risk exposure and results of bootstrapping.

4.1.6  Generating output
Procedures that generate output and graphics.
TCO: warning message consumption days only.
TAB1PRINT: prints a summary of the data used for simulating consumptions and residues. Mean
consumptions are averaged after day and/or age restrictions. Printed output is on commodity, average
consumption for all consumers and consumers only, number of consumer occasions, the average
residue (corrected for processing and after missing values have been replaced by the LOR), the
number of non-zero residues and the total number of samples (non-zero and zero residues). The same
information is printed for commodities which are processed in more than one way.
TAB2PRINT: prints a summary of the simulation results. Printed output, see TAB1PRINT.  Three
columns are added: the first describes the difference (%) compared to the average consumption of the
data and the second the difference (%) compared to the average residue of the data, the last gives the
average of the processing factors per commodity corrected for consumption ratio’ s. This table is used
to compare the simulation results with the summarised data. Large discrepancies between both tables
indicate that simulation results are variable.
TAB3PRINT: prints percentiles, the maximum and average intake. Contains HTMHEAD,
HTMCODE, HTMGEN, HTMBUT (percentiles.htm, percentiles.dat).
T4APRINT: prints characteristics per commodity of the upper quantile of the intake distribution with
the corresponding intake. Printed output is relative contribution per commodity, average concentration
per commodity, percentage of each commodity with a residue and the average concentration on
commodities with a residue. The same information is printed for commodities which are processed in
two or more ways. Contains HTMHEAD, HTMCODE, HTMGEN, HTMBUT, HTM1MOUSE,
HTM2MOUSE (averconccomres.htm, averconccomres.dat, uppersens.htm).
T4BPRINT: prints characteristics per commodity of the total intake distribution. Printed output, see
T4APRINT. Contains HTMHEAD, HTMCODE, HTMGEN, HTMBUT, HTM1MOUSE,
HTM2MOUSE (totalsens.htm).
TAB5PRINT: prints the intake per commodity of the 10 consumers with the highest total intake and
bodyweight and age. The same information is printed for commodities which are processed in two or
more ways.
TAB6PRINT: prints the consumption per commodity of the 10 consumers with the highest total
intake. The same information is printed for commodities which are processed in two or more ways.
TAB7PRINT: prints residue levels per commodity of the 10 consumers with the highest total intake.
The same information is printed for commodities which are processed in two or more ways.
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TAB8PRINT: prints IESTI and Monte Carlo percentiles per commodity.
TAB8APRINT: prints IESTI, bootstrap intervals and Monte Carlo percentiles per commodity.
PLTOTDISTR: plots a graph of the total distribution of positive intakes. Contains HTMHEAD,
HTMCODE, HTMGEN, HTMBUT (totaldistr.htm, totaldistr.dat).
PLUPDISTR: plots a graph of the upper tail of the intake distribution. Contains HTMHEAD,
HTMCODE, HTMGEN, HTMBUT (upperdistr.htm, upperdistr.dat).

4.1.7  Generating output for Component One
For communication with a browser, CompOne output is written in ActiveX-code and HTML-script.
Supporting procedures are:
WARNING: warning message ‘Fatal error occurred, see logfile’
INPSHEET: prints a short summary of the specifications
HTMPRINT: pop-up menu to request output
HTMHEAD: header and definitions HTML-pages
HTMCODE: definitions cabinet file and linkage package ComponentOne ActiveX controls
HTMGEN: definitions chartarea ComponentOne ActiveX controls
HTM1MOUSE: definitions mouse control ComponentOne ActiveX controls
HTM2MOUSE: definitions mouse control checkbox ComponentOne ActiveX controls
HTMBUT: definitions button onclick ComponentOne ActiveX controls
STRIP: removes physical server address from the file specification and transscripts the path to a
internet-address.
RIGHTVIEW: prints the right frame of the HTML-form to view output
LEFTVIEW: prints the left frame of the HTML-form to view output
MCRAVIEWOUTPUT:defines frames for viewing output
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